Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Koenig, Sven; Stern, Roni; Vallati, Mauro (Ed.)Probabilistic Simple Temporal Networks (PSTN) facilitate solving many interesting scheduling problems by characterizing uncertain task durations with unbounded probabilistic distributions. However, most current approaches assess PSTN performance using normal or uniform distributions of temporal uncertainty. This paper explores how well such approaches extend to families of non-symmetric distributions shown to better represent the temporal uncertainty introduced by, e.g., human teammates by building new PSTN benchmarks. We also build probability-aware variations of current approaches that are more reactive to the shape of the underlying distributions. We empirically evaluate the original and modified approaches over well-established PSTN datasets. Our results demonstrate that alignment between the planning model and reality significantly impacts performance. While our ideas for augmenting existing algorithms to better account for human-style uncertainty yield only marginal gains, our results surprisingly demonstrate that existing methods handle positively-skewed temporal uncertainty better.more » « less
-
Benton, J; Lipovetzky, Nir; Onaindia, Eva; Smith, David E; Srivastava, Siddharth (Ed.)Flexibility is a useful and common metric for measuring the amount of slack in a Simple Temporal Network (STN) solution space. We extend this concept to specific schedules within an STN’s solution space, developing a related notion of durability that captures an individual schedule’s ability to withstand disturbances and still remain valid. We identify practical sources of scheduling disturbances that motivate the need for durable schedules, and create a geometricallyinspired empirical model that enables testing a given schedule’s ability to withstand these disturbances. We develop a number of durability metrics and use these to characterize and compute specific schedules that we expect to have high durability. Using our model of disturbances, we show that our durability metrics strongly predict a schedule’s resilience to practical scheduling disturbances. We also demonstrate that the schedules we identify as having high durability are up to three times more resilient to disturbances than an arbitrarily chosen schedule is.more » « less
-
Benton, J; Lipovetzky, Nir; Onaindia, Eva; Smith, David E; Srivastava, Siddharth (Ed.)Controllability for Simple Temporal Networks with Uncertainty (STNUs) has thus far been limited to three levels: strong, dynamic, and weak. Because of this, there is currently no systematic way for an agent to assess just how far from being controllable an uncontrollable STNU is. We use a new geometric interpretation of STNUs to introduce the degrees of strong and dynamic controllability – continuous metrics that measure how far a network is from being controllable. We utilize these metrics to approximate the probabilities that an STNU can be dispatched successfully offline and online respectively. We introduce new methods for predicting the degrees of strong and dynamic controllability for uncontrollable networks. In addition, we show empirically that both metrics are good predictors of the actual dispatch success rate.more » « less
-
Benton, J; Lipovetzky, Nir; Onaindia, Eva; Smith, David E; Srivastava, Siddharth (Ed.)Generating and executing temporal plans is difficult in uncertain environments. The current state-of-the-art algorithm for probabilistic temporal networks maintains a high success rate by rescheduling frequently as uncertain events are resolved, but this approach involves substantial resource overhead due to computing and communicating new schedules between agents. Aggressive rescheduling could thus reduce overall mission duration or success in situations where agents have limited energy or computing power, and may not be feasible when communication is limited. In this paper, we propose new approaches for heuristically deciding when rescheduling is most efficacious. We propose two compatible approaches, Allowable Risk and Sufficient Change, that can be employed in combination to compromise between the computation rate, the communication rate, and success rate for new schedules. We show empirically that both approaches allow us to gracefully trade success rate for lower computation and/or communication as compared to the state-of-the-art dynamic scheduling algorithm.more » « less
An official website of the United States government
